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[1] The twin Mars Exploration Rovers (MER) delivered an unprecedented array of image
sensors to the Mars surface. These cameras were essential for operations, science, and
public engagement. The Multimission Image Processing Laboratory (MIPL) at the Jet
Propulsion Laboratory was responsible for the first-order processing of all of the images
returned by these cameras. This processing included reconstruction of the original
images, systematic and ad hoc generation of a wide variety of products derived from those
images, and delivery of the data to a variety of customers, within tight time constraints. A
combination of automated and manual processes was developed to meet these
requirements, with significant inheritance from prior missions. This paper describes the
image products generated by MIPL for MER and the processes used to produce and
deliver them.
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1. Introduction

[2] The successful landing of NASA’s Mars Exploration
Rover (MER) rovers ‘‘Spirit’’ and ‘‘Opportunity’’ on the
surface of Mars in January of 2004 marked the beginning
of a mission that was highly dependent on the timely and
efficient ground processing of engineering and science
camera images. Rover instrument data telemetered daily
to the MER Ground Data System (GDS) at the Jet
Propulsion Laboratory (JPL) had to be processed with
sufficient turnaround for use by operations and science
personnel who convened in tactical planning sessions to
decide the following day’s rover activities.
[3] The Multimission Image Processing Laboratory

(MIPL) at JPL was tasked with processing the MER
instrument telemetry data on the GDS as part of the
Operations Product Generation Subsystem (OPGS). The
scope of MIPL’s role was comparable to those served in
1997 and 2001 in support of operations for the Mars
Pathfinder (MPF) [LaVoie et al., 1999] and Mars Polar
Lander (MPL) missions, respectively. Similarities in mis-
sion objectives with MPF and MPL enabled much reuse of
code and algorithms in the development of the MER
product-generating application software.
[4] For MER, MIPL’s capabilities were integrated into the

critical path of tactical operations more so than with the
previous Mars lander missions. As such, MIPL designed
and implemented an automated end-to-end data product

generation system that relied on the ability to transport in
sequence, or ‘‘pipeline’’, the rover instrument data between
disparate application processes running concurrently on
GDS computing resources.
[5] A high level overview of the MIPL product genera-

tion system is diagramed in the context of the MER GDS
in Figure 1. It illustrates the ingestion of rover instrument
telemetry data into the MIPL system to produce labeled
first order products called Experiment Data Records
(EDRs) for use by science teams. In the case of camera
instrument data, the data was processed further into a
plethora of derived data products called Reduced Data
Records (RDRs) for the extraction of terrain information
valuable for planning rover navigation. The derived
products included (1) single image types such as geomet-
rically corrected images, (2) stereo-image types character-
izing the scene terrain, and (3) multiple-image types
including unified 3-dimensional terrain models and
multi-image mosaics. Each resultant product was placed onto
the mission’s Operations Storage Server (OSS), a secured file
server, for retrieval by a variety of customers that primarily
included teams of rover navigation planners and science
activity planners. Finally, products were delivered outside
the MER GDS environment to the home institutions of
science teams and other remote sites using the File Exchange
Interface (FEI), a file delivery application discussed in more
detail in section 7.3. Products were also accessible through
interface with Planetary Data System (PDS) Web-based
resources such as the Image Atlas managed by the Image
Node at JPL and the Analyst’s Notebook managed by the
Geosciences Node at Washington University in St. Louis.
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[6] This paper will elaborate on the processes, capabilities,
products and customers shown in Figure 1, and will include
discussion of the MIPL pipeline’s underlying system archi-
tecture, design and operation. Though the focus will be on
the OPGS products generated by MIPL, it should be noted
that the Panoramic Camera (pancam) and Microscopic
Imager (MI) teams also generated camera image products
onto the OSS as science products separate from the OPGS
products.

2. System Architecture

[7] The MIPL operations system was composed of a suite
of individual application programs that performed distinct
operations on data products. The application processes were
managed by higher level ‘‘glue’’ software that determined
the identity of process inputs and the order of program
execution. The integration of the application programs with
the ‘‘glueware’’ established the complete pipeline system.

2.1. Operational Environment

[8] The preferred systems for MER operations consisted
of a mix of Sun-Solaris and Intel-Linux machines using a
Sun Network File System (NFS) system. MIPL opted to go
with four Linux machines per rover mission, each with dual

processors running at 2GHz with 1GB of RAM and
connected via a high speed optical link to the OSS shared
file system. The OSS was an elaborate directory structure
that generally organized data file storage by the categories
of mission phase, Mars solar day (Sol) and instrument type.
Symbolic links defining file pointers were used to expedite
data processing on the OSS. The OSS physically resided on
an NFS server, providing access to all workstations net-
worked within the MER flight Local Area Network (LAN).
The OSS was then replicated for each rover, with a full
redundant backup, for a total of four distinct systems.

2.2. Customers

[9] The many products generated by MIPL were needed
by several teams for rover operations planning. Among
them were the science teams who used the Science Activity
Planner (SAP) tool [Norris et al., 2005] for targeting surface
features of interest as part of short-term planning, rover
tactical operations planners who used the Rover Science
Visualization Planner (RSVP) tool [Maxwell et al., 2005] in
planning the rover maneuver command sequences for the
next Sol’s activities, the rover mobility team that was
responsible for reviewing image data to determine where
the rover actually had moved in comparison to the nominal
traverse plan for the previous day, and the rover long-term

Figure 1. MIPL system overview in MER GDS context.
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planners who analyzed multi-image mosaics to plot the
course of rover movement several days in advance.
[10] Three additional customers who used the MIPL

products were remotely located science teams that evaluated
the data more extensively outside the tactical timeline, the
Educational Public Outreach office who posted data to the
Mars Rovers public Web site and distributed it to hundreds
of museums across the United States, and the Public
Information Office (PIO) which disseminated information
during press conferences.

2.3. Performance Requirements

[11] MIPL’s data processing requirements were directly
affected by the large quantity of instrument data projected to
accumulate on the GDS each day as part of the tactical rover
operations. For contrast, the MPF data volume was popu-
lated mostly by 256 � 256 pixel sized images acquired by
the lander’s stereo cameras, while each MER rover had nine
cameras that acquired images that typically were 1024 �
1024 pixels in size. The volume of data returned by a single
rover from one Site was often more than MPF returned for
its entire mission. All of this amounted to an enormous
planned data volume that had to be managed efficiently by
MIPL’s system.
[12] The most challenging requirements were related to

the time constraints by which data products were needed for
use in the rover tactical planning meetings. Three important
timing requirements follow:
[13] 1. EDRs, or the NASA Level-0 data products, had to

be generated in near real-time. In other words, nearly as fast
as the rate at which the rover was capable of transmitting the
data to Earth either directly or via orbiter relay. Given that
telemetry volume was planned for about 200 EDRs per
downlink, this requirement would keep processing at a pace
compliant with the timeliness requirements set for the 3-D
terrain end products, thereby allowing sufficient time for the
daily rover navigation planning session.
[14] 2. The 3-D terrain meshes needed for rover and

robotic arm planners had to be generated within 1 hour
from the end of the applicable downlink session, a turn-
around necessary to allocate sufficient time for the subse-
quent daily rover planning session.
[15] 3. All products generated on the OSS had to be

available to flight LAN users upon creation and distributed
to remote sites external to the flight LAN within seconds.

2.4. Other Requirements

[16] There were other indirect requirements that shaped
the design and operation of MIPL’s system. For example:
[17] 1. The target hardware platforms and their config-

urations were unknown when the design of MIPL’s soft-
ware capabilities began. At the time, the project considered
several options. As a result, MIPL designed and imple-
mented its system in such a way that it could run in either
Sun-Solaris or Intel-Linux environments. This allowed
other UNIX-like systems or environments, including a
variety of Linux systems, to be accommodated with
relative ease.
[18] 2. An early decision by the mission restricted the use

of any Data Base Management System (DBMS), such as
SYBASE, MySQL, etc., from being in the critical path of
operations. The decision was based on concerns that failure

of a DBMS might jeopardize mission planning for one or
more Sols, and that DBMS failover was too costly.
[19] 3. Use of a Web server was also restricted inside the

flight LAN.
[20] 4. The use of Planetary Data System (PDS) image

and metadata formats, common standards that are regularly
applied in the use of planetary data, were mandated by the
project for all operational and archived image data.

2.5. Heritage From Prior Missions

[21] The reuse of software available from previous mis-
sions similar to MER, such as MPF and MPL, provided
MIPL with a genuine opportunity for cost savings. This
came principally in two forms: (1) software that generated
the RDR, or NASA Level 1+ derived product, and (2) the
Video Information Communication And Retrieval (VICAR)
file format.
2.5.1. RDR-Generation Software
[22] The software used for RDR generation was originally

developed for MPF, starting in 1994. The software worked,
but it was specific to MPF, with hardcoded constants,
inflexible algorithms, and much duplication of code.
[23] During the development phase for MPL, it was

realized that the MPF code could be reused with some
modifications. Furthermore, future missions would have
similar requirements. MIPL developers therefore embarked
on an effort to reengineer the software to make it reusable in
future missions [Deen, 2003a].
[24] The result was a set of application programs without

mission-specific references. All mission-specific code is
encapsulated into a library known as Planetary Image
Geometry (PIG). This C++ library uses object-oriented
abstractions to hide the mission-specific code behind a
common interface. The common interface provides facilities
to manipulate things like camera models, camera pointing,
surfaces, coordinate systems, image files and metadata. For
example, a generic pointing model can repoint cameras on
the basis of a specified set of pointing parameters. The logic
in MER-specific subclasses apply MER kinematics to point
the pancam, Navigation Camera (navcam) or MI on the
basis of MER parameters, and return a pointed camera
model.
[25] The PIG library currently supports six ‘‘missions’’:

MPF, MPL, Mars ’01 testbed, a JPL testbed rover called
Field Integrated Design & Operations (FIDO), MER, and a
‘‘generic’’ mission. Adaptation times for each mission have
ranged from a few days in the Mars ’01 testbed case to a
few months in the MER and FIDO cases. MER required
both adaptation and the development of many new capabil-
ities to be added to the library. Examples are the ability to
support multiple rover locations (Sites), as well as support
for fisheye-lens camera models used by the Hazard Avoid-
ance Cameras (hazcams) as described by Gennery [2002].
These new capabilities added for MER will be available to
future missions, as well as for reprocessing data from old
missions if desired.
[26] This legacy code reuse has worked well in this area.

The mission-independent application code is about 2.5
times larger than the PIG library. Each mission’s code
represents less than 5% of the entire code base, sometimes
much less [Deen, 2003a], which translates into significant
cost savings for MER and future missions.
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2.5.2. VICAR and PDS File Formats
[27] The MER project required that all science instrument

products, including image products, be generated using the
PDS file format. However, the legacy software described in
the previous section was written to use the VICAR file
format, which was developed at MIPL and had been used
for decades by MIPL software (see http://www-mipl.jpl.
nasa.gov/vicar). To preserve the considerable software
heritage, a ‘‘dual-labeled’’ file format was designed so
that both a PDS and a VICAR label were attached to the
images. The VICAR I/O system was modified to recognize
and skip over the PDS label on read, while the application
programs would write pure VICAR format with a separate
‘‘transcoder’’ program to add an equivalent PDS label
afterward. The PDS format already supported a mechanism
to skip over the embedded VICAR label. So, the dual-
label design accommodated MIPL software written to use
only the VICAR label as well as software developed
outside of MIPL written to use only the PDS format. This
had the additional advantage of making available the large
base of legacy image processing applications written for
VICAR.
[28] As a note, the only significant part of the VICAR

label that was not duplicated in PDS (and vice versa) was
the history label. On occasion, access to this label added
to the analysis of the image data, since it listed the
parameter values used by programs when the data was
processed.

3. Pipeline Design and Implementation

[29] The need for camera images to be processed and
delivered in a compressed time frame induced MIPL to
develop a product generation and delivery pipeline that was
robust and almost completely autonomous in its operation.
This section presents a brief overview of the pipeline’s
design and identifies the interconnecting process streams;
see Alexander et al. [2005] for more details.
[30] The pipeline’s glueware was developed as a script

roughly 10,000 lines of code in length using the Unix
Bourne shell [Kochan and Wood, 1998]. Development
was driven by a few factors: (1) scripts are generally more
flexible and easier to maintain than low level C++ code,
(2) the MER GDS provided a Unix-based environment
that supported the Sun-Solaris and Linux Red Hat oper-
ating systems, making the glueware script readily deploy-
able on multiple systems, (3) establishing Unix as the
product generation system baseline, combined with famil-
iarity of Unix amongst operations team members, made
the design amenable to future integration of ancillary
tools developed as scripts during mission operations, and
(4) heritage brought from MPL, where the product
generation system was developed under the Bourne-again
shell (Bash), provided precedents in a few areas of the
pipeline design (such as driving processing events based
on file detection).
[31] At the outset, the design was affected by project

policy reflected in two requirements mentioned in section
2.4: (1) the restricted use of a database in the critical path of
mission operations, and (2) the restricted use of a Web
server inside the flight LAN. As a result of the first
restriction, the pipeline was devoid of a database. The

second restriction limited the distribution of the system’s
data product tracking results.
[32] Without the capability of database stored procedures

that trigger and terminate process I/O automatically, the
design’s fundamental strategy became one of driving each
processing event on the basis of detecting files on the
OSS file system. The event-driven processing involved
the continuous search for data products on the OSS that
matched specific criteria. The returned status of each
attempted search drove the execution of subsequent
events that were scheduled as segments within a sequen-
tial ‘‘stream’’ of processes. The pipeline performance was
a function of two design factors: (1) the system’s ability
to spawn process streams in parallel automatically and
(2) the ability of operators to distribute the streams
manually across available machine resources for load
balancing.
[33] Briefly, each process stream consisted of an endless

loop that continuously searched temporary directories on
the OSS that served as ‘‘queues’’ for processing of data
products. To speed up file handling, files were symbolically
linked, or ‘‘soft linked’’, so that in each case only the
address of the file’s pointer was changed instead of copying
the entire file from one queue to another. This avoided the
problem of accessing partially written files from other
processes. There were also other temporary directories for
contingency purposes, including the backup of each input
file’s link and storage of links for files that failed application
processing.
[34] The pipeline managed five independent processing

streams that were executed in parallel to one another:
(1) the Application Stream, which invoked the application
program’s command line for each input file, (2) the PDS
Labeling Stream, which converted the VICAR-formatted
output to a dual-labeled PDS-compliant file using a Java
‘‘transcoder’’ program, (3) a Product Delivery Stream for
transport of the final PDS-labeled products to the nominal
customer directories on the OSS, (4) a second Product
Delivery Stream for transport of the final PDS-labeled
products to remote sites external to the flight LAN via
FEI, and (5) the Image Display Stream, which called the
Java EDR Display Interface (JEDI) for image display of
each EDR file onto a user-specified monitor.
[35] Importantly, the pipeline was flexible on two

fronts: developmentally and operationally. Regarding the
former, the design was pliable enough for the quick
addition of new capabilities ad hoc during MER oper-
ations to accommodate growth in mission requirements.
As an example, the evolution of the new Slope RDR
product type (see section 4.2.2), from design to product
generation, took just over three days, with the majority
of time committed to modifying application software.
Integration of the capability into a test pipeline and
subsequent systematic testing was performed in just over
one day. Final activation was completed during the daily
20-minute shutdown/restart of the operational pipeline
that was practiced to manage temporary file growth on
the OSS.
[36] Operationally, the flexibility was evidenced by a

special mode of pipeline invocation wherein the user
controlled the data product flow into private directories
without touching the OSS. This was useful in generating
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nonstandard data products for special purposes at the
request of a customer, and for testing new processing
methods without impacting MER operations.

4. Pipeline Data Products

[37] The myriad products generated by the MIPL auto-
mated pipeline are shown in their sequence of processing in
Figure 2. They are described in this section at a fairly high
level, but with enough detail to understand what they are.
For full details on these products, including file formats,
metadata contents, and algorithm references, see Alexander
et al. [2003].

4.1. First Order Products (EDRs)

[38] Each MER rover payload instrument acquired unique
data that were saved onboard as separate products. Upon
transmission to Earth, the products were each split into parts
and packaged inside telemetry packets. Each packet was
identified according to the type of data it carried, plus
additional ancillary information required for data product
reconstruction on the ground.
[39] The ground data subsystem that was upstream of

MIPL in the GDS configuration reconstructed the telemetry
packets into data products, with each made up of two
components: (1) a binary file containing the instrument data
and (2) a meta-file containing ancillary information that
characterized the instrument data. Additionally, the up-
stream subsystem was capable of handling some bit level
errors that were due to transmission noise. When such
corrections were not possible, or when data were missing,
the meta-file was tagged with information flagging the
condition. In most cases, corrupt or partial data products
were retransmitted and when new versions were available,
they were used to overwrite the older, less complete
versions on the GDS.
[40] MIPL digested the telemetry data product to create

the first order, or ‘‘raw’’, EDR product that corresponds to

Level 0 in the NASA data processing hierarchy. Each MER
EDR contained the instrument data reformatted into a
usable product, plus a complete label that was fully com-
pliant with PDS rules and guidelines, making the EDR
archive-ready. See Figures 3a and 3b for examples of
camera instrument EDRs. For all MER camera instruments,
which included navcam, pancam, MI and two hazcams, the
resultant EDR files contained an attached label. A discus-
sion of the nonimage instrument data processing is beyond
the scope of this paper.

4.2. Derived Products (RDRs)

[41] Once the image EDRs were generated, a wide variety
of products (mostly images) were automatically and sys-
tematically generated from them. These RDRs can be
broken down into three broad classes: those derived from
a single image, those derived from a stereo image pair, and
those making use of multiple images. These products are
described below. The 3-letter identifiers specified in
parentheses after each type appeared in the filenames to
distinguish these products uniquely, and are provided for
reference (for filename conventions and table of identifiers,
see Alexander et al. [2003, section 4.4]).
[42] The algorithms used for radiometric correction, lin-

earization and XYZ derivation were substantially similar to
those used for MPF [LaVoie et al., 1999], with incremental
improvements (such as the addition of the CAHVORE
camera model). Disparity maps and terrain meshes were
also created for MPF, but the algorithms used for MER were
significantly different.
4.2.1. Single-Image Products
[43] These are all derived from a single EDR.
[44] Inverse LUT (ILF, INN, ISF): The cameras produced

12-bit images. A common compression method, especially
for pancam and MI, was to use an onboard look-up table
(LUT) to convert this to 8-bit data for transmission. An
inverse LUT process restored the original 12-bit data
format, with some loss of intensity resolution. If the EDR

Figure 2. MIPL product generation pipeline data flow.
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was already 12-bit, this was just a copy. For consistency,
this image was used as the base image for all further
processing.
[45] Radiometric Correction (RAD, RAL, RSD, RSL,

MRD, MRL): The images were radiometrically corrected
by removing the effects of exposure time and temperature,
and applying a flat-field correction [Maki et al., 2003]. The
technique used was called MIPLRAD. It is important to
note that this was a quick-look radiometric correction

intended mainly for operations work; full science-quality
radiometric correction was performed by the pancam team
[Bell et al., 2003].
[46] Linearization (FFL, DNL, SFL): Each image was

described by a camera model, which permitted a point in
XYZ space to be traced into the image plane, and vice
versa. The navcam, pancam, and MI used the CAHVOR
model [Gennery, 2001], which modeled radial optical dis-
tortion. The front and rear hazcams used the more general

Figure 3. Front hazcam images acquired by Spirit on Sol 210 (Site 85). Figures 3a and 3b are the raw
images (Right and Left, respectively, for cross-eyed stereo viewing). Figures 3c and 3d are the same
images after linearization and radiometric correction (again, R and L for cross-eyed viewing).
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CAHVORE model [Gennery, 2002], which added a moving
entrance pupil and could model fisheye lenses.
[47] The CAHVOR and CAHVORE models were gen-

eralizations of a much simpler linear camera model known
as CAHV [Yakimovsky and Cunningham, 1978]. This
consisted of four vectors representing the position of the
camera entrance pupil (C), a unit vector normal to the
image plane (A), and two vectors compositing the orien-
tation of the CCD, the scale, and the image center in the
horizontal and vertical directions (H, V). If P was a point
in the scene, then the corresponding image locations x and y
could be computed from

x ¼ P� Cð Þ �H
P� Cð Þ � A ð1Þ

y ¼ P� Cð Þ � V
P� Cð Þ � A

The linearization process took the original image and
reprojected, or warped, it so it could be described by the
linear CAHV model. This process had several benefits:
[48] 1. It removed geometric distortions inherent in the

camera instruments, with the result that straight lines in the
scene were straight in the image.
[49] 2. It aligned the images for stereo viewing (epipolar

alignment). Matching points were on the same image line in
both left and right images, and both left and right models
pointed in the same direction. With perfect calibration, line
disparity would be 0.
[50] 3. It facilitated correlation, allowing the use of

1-dimensional correlators.
[51] 4. It greatly simplified the mathematics involved in

using the camera model.
[52] However, the linearization process did introduce

some artifacts: scale change and/or omitted data [Deen,
2003b]. It also introduced a small amount of interpolation
noise (errors introduced by resampling the pixel grid, which
is required when warping any image).
[53] The MER project decided early on to use linearized

images for all operational terrain derivation. See Figures 3c
and 3d for an example of linearized images.
4.2.2. Stereo-Image Products
[54] These products were derived from a pair of (line-

arized) stereo images. The design of the MER camera
systems was such that stereo pairs were normally acquired
simultaneously, an aspect used by the MIPL pipeline to
match the pairs. Occasionally stereo pairs were acquired at
different times; this required manual intervention to match
the pairs.
[55] Disparity Map (DIL): Stereo image pairs were

correlated to create a disparity map, which mapped each
pixel in the left image to its matching pixel in the right
image (to subpixel accuracy). This was the first, most
important, and most CPU-intensive step in recovering 3-D
terrain information.
[56] The correlation process was quite complex and is

fully described by Deen and Lorre [2005]. In summary,
downsampled (zoomed-out) linearized pairs were first cor-
related using the same 1-D correlator as was used by the
onboard navigation software [Goldberg et al., 2002]. This
seed point image was then refined using a 2-D correlator,

scaling up by a factor of 2 and repeating until full resolution
was reached.
[57] An important variant on disparity was the process

used to create photometric products by the pancam team
[Soderblom et al., 2004; Johnson et al., 2006]. In this case,
the original images were used: they were not linearized.
Instead of a 1-D correlator, seeds were created using an
idealized surface and the camera geometry. From that point
on, the same 2-D correlator was used.
[58] XYZ Image (XYL): The XYZ image contained, for

each pixel, the coordinates in 3-D space of the object
imaged by that pixel. See Figure 4a for an example. This
XYZ location was derived from the camera models and
disparity map. For each pixel in the left eye, the disparity
map was used to find its partner in the right eye. Rays
were then projected into space from those pixels using the
images’ camera models. The point where these rays come
closest to intersecting (midway between them) was the
XYZ coordinate, which was stored in the file. This
directly represented the 3-D terrain. The coordinate could
be rejected for any of a number of reasons [Deen and
Lorre, 2005]. These heuristically determined rules (e.g.,
diverging rays, line disparities or ray miss distances that
are too large) helped to filter out points that were
improperly correlated, which improved the quality of the
result.
[59] Mask Image (MSL): Associated with each XYZ file

was a mask, which was intended to exclude the rover
volume and the horizon from consideration when making
a mesh. This mask was not archived but was stored in the
OSS.
[60] Range Image (RNL): The range image was a simple

Cartesian distance of XYZ points from the camera center.
See Figure 4b for an example.
[61] Terrain Wedge (VIL): This was a representation of

the terrain for this image pair made by decomposing the
XYZs into geometry triangles [Wright et al., 2005].
[62] Surface Normal (UVL): This image contained the

surface normal at each pixel. See Figure 4c for an example.
This was computed by fitting a plane to all points from the
XYZ image within 2.5 cm of the pixel, then rejecting
outliers and repeating the plane fit. This process iterated
until a minimum plane fit error was reached or until there
were too few points remaining for a reliable plane calcula-
tion. The 2.5 cm threshold approximated the radii of the
contact surfaces of the IDD instruments. The surface normal
thus provided reachability and safety information for arm
operations [Leger et al., 2005].
[63] IDD Reachability (IDL): XYZ and Surface Normal

were combined with Instrument Deployment Device (IDD)
robot arm kinematics (from the flight software) to deter-
mine which points were reachable by the arm’s four
instruments. See Figure 4d for an example. Each instru-
ment could be in one of four arm configurations (elbow up
or down, wrist up or down) for a total of 16 reachability
values for each pixel. For the Rock Abrasion Tool (RAT),
instead of a simple flag, the value represented the maxi-
mum preload that could be applied by the arm at that point
[Leger et al., 2005].
[64] Surface Roughness (RUL): The roughness map

was used to assess safety for the RAT. It contained
for each pixel the maximum peak-to-peak deviation of
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Figure 4. Derived images overlaid on hazcam from Figure 3. (a) XYZ image. Contour lines are 0.1 m
apart; red for X, green for Y, blue for Z. (b) Range image. Contour lines are 0.1 m apart. (c) Surface
normal. Color indicates direction of normal. (d) IDD reachability. Red is MI, green is MB, blue is APXS
for one configuration. (e) Slope map. Blue is flatter, red is steeper (�30 degrees). (f) Solar energy map.
Blue represents more energy; red represents less.
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the surface from the local plane within an area the size
of the RAT.
[65] Slope Products (SLL, SHL, SML, SRL): Late in the

90-Sol primary mission, as Opportunity descended into
Endurance Crater and Spirit climbed the Columbia Hills,
it was found that some extra products were needed to
support operations. These were collectively called the Slope
products, as well as Solar Energy. See Figure 4e for a Slope
example. All of them were derived from the XYZ image
and the Surface Normal. However, the surface normal is
calculated somewhat differently from that described above,
and was not saved or archived. Instead of a 2.5 cm patch,
the normal was calculated over a rover-sized patch (1.6 m
diameter). There were also a few other changes for effi-
ciency over such a large patch.
[66] From the surface normal (whose three components

are u, v, and w, corresponding to the components of the unit
vector in the x, y, and z directions, respectively), the Slope
(SLL) in degrees was computed as

slope ¼ 180

p
p
2
þ tan�1 wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

� �� �
ð2Þ

Slope Magnitude (SML) was directly related to slope, and is
the magnitude of the normal unit vector projected into the
horizontal plane:

slope mag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
ð3Þ

Slope Heading (SHL) indicated the direction of the slope
as a clockwise angle from north (in degrees, using the
4-quadrant form of arctangent):

slope heading ¼ 180

p
tan�1 v

u

� �
ð4Þ

Slope in the Rover Direction (SRL) was a measure of
the component of the slope that was facing the rover,
i.e., if the rover went radially outward from its current
position, would that be a climb or a descent? It was

intended to help optimize the usage of Spirit’s right front
wheel.

srd ¼ � 180

p
tan�1 Vxuþ Vyv

�w

� �
ð5Þ

where V is a 2-D unit vector from the rover’s position
(R) to the location of the pixel (x, y, z):

V ¼
x� Rx; y� Ry

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� Rxð Þ2þ y� Ry

	 
2q ð6Þ

[67] Solar Energy Maps (SEL): In addition to slope, the
amount of available solar energy was a primary concern,
especially through the Martian winter. This was computed
by taking the dot product of the rover’s normal with the
approximate sun vector at noon. The sun vector was
computed simply by using the sun angle at noon (S), which
was changed on the order of monthly through the mission.
Thus the Solar Energy map represented only an approxi-
mate insolation amount, but was good enough to avoid low
energy areas during operations. Note that only the overall
tilt of the rover was considered for this. Shadow effects
were ignored; experience showed that very few local terrain
features (such as rocks) were big enough to cast any
significant shadow on the rover’s solar panels. Self-
shadowing, e.g., from the high-gain antenna and camera
mast, was dealt with independently by the operations team.
See Figure 4f for an example.

energy ¼ cos S
p
180

� �
; 0;� cos 90� Sð Þ p

180

� �h i
� u; v; w½ � ð7Þ

4.2.3. Multi-image Products
[68] Terrain Mesh Products (ASL): Terrain meshes were

used by Rover planners to plan their traverses and IDD
operations [Wright et al., 2005]. A terrain mesh was derived
from XYZ images and corresponding images that were used
as the mesh ‘‘skin’’, or texture map. The mesh process
began by taking the XYZ coordinates from the XYZ image
and converting them to geometric triangles, a method called
‘‘triangulation’’. The point of each triangle was oriented
toward the left eye/camera. Connectivity was implied by the
pixel ordering or by volume-based surface extraction. This
process was performed for each image to derive an associ-
ated terrain ‘‘wedge’’. Mesh building was completed by
combining the many terrain wedges, thereby creating a
unified 3-D terrain model for the rover’s surroundings.
See Figure 5 for an example.
[69] The mesh thus took the XYZ points and connected

them into a polygonal representation of the surface suitable
for use by 3-D modeling tools, with the image serving as a
texture map. In this way the mesh could be viewed as a
surface reconstruction of the ground near the instrument,
capturing both the shape and visual features of the surface.
[70] Mosaic Products (CYL, PER, CYP, POL, VRT):

Mosaics were composed of many images, combined to
show the terrain from a wider perspective. The pipeline
was capable of automatically generating mosaics, which
was often done but not systematically. However, most

Figure 5. Screen shot of RSVP showing terrain mesh
being used for arm (APXS) targeting. Mesh is derived from
same front hazcam as Figures 3 and 4.
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mosaics required manual correction to look their best.
Mosaics and the correction techniques used for them are
described in the next section.
4.2.4. Special Products
[71] Throughout the mission, MIPL was asked by various

customers to create special products that were outside the
normal automated processing flow. While each product was
by definition different, a few examples are presented here to
give a sense of the range of special products produced.
[72] Quite a few products were made for operations

support. These included semi-standard tasks like changing
the rover mask for a mesh or brightening up shadowed
areas, to more specialized processing such as combining
data from different locations into a single mesh. In several
instances, the RAT team requested surface roughness maps
generated using something other than the default parameter
set. On occasion, high-priority imagery would not correlate
well enough using the standard parameters, so parameter
changes were needed. Slope products originated as a special
product but soon became a standard product integral to
mission planning.
[73] For science, by far the largest special request was for

photometric products. This was a collaboration with the
pancam team to generate photometric products systemati-
cally from a combination of MIPL and pancam software
[Soderblom et al., 2004; Johnson et al., 2006]. Additional
examples of science requests include enhancement of the
sky to find clouds, analysis to look for dust devils, detailed
(low-noise) XYZ processing of a trench dug by the wheels,
and XYZ mosaics for coregistration with the miniTES
spectrometer data.
[74] For PIO, examples included generation of short

movies (animated GIFs) showing arm or rover motion,
products combining MI images with hazcam, navcam, or
pancam to provide context for the MI image, and mosaics of
all varieties.

5. Mosaics

[75] The most visible products generated by MIPL for
MER were mosaics. Many hundreds of mosaics were

created for science, operations, and public outreach purpo-
ses. The mosaics created for MER fell into several broad
categories.
[76] Full pancam panoramas: Created in collaboration

with the pancam team, these 180� to 360� color and stereo
mosaics were the signature mosaic products of the mission.
As of this writing, there have been eight of these acquired
by Spirit, named: Mission Success, Legacy, Bonneville,
Santa Anita, Cahokia, Thanksgiving, Lookout and Indepen-
dence. Opportunity has taken six, named: Mission Success,
Lion King, Endurance 1 (180�), Endurance 2, Burns Cliff
(180�) and Rub al Khali. MIPL performed the pointing
correction and actual mosaicking of the images, using
radiometrically corrected images produced by the pancam
team. The completed mosaics were then handed off to the
pancam team for final color processing. They were usually
in cylindrical and cylindrical-perspective projections.
[77] Site panoramas: Each time the rover declared a new

Site, or after a long drive, a navcam stereo panorama of the
surroundings was taken. This was usually a full 360�
panorama, although not always. MIPL systematically cre-
ated mosaics for all of these, in all projections (except
perspective). See Figures 6, 7, 8 and 9, which are different
projections of the same Site panorama, for examples. They
were used by long-term mission planners as well as pro-
viding the bulk of mosaics released on the public Web site.
[78] RAT holes: At the request of the RAT team, MI

images covering every RAT hole were created in the
perspective projection. A few of these were created in
stereo using one of two methods: (1) physical parallax via
arm motion and (2) depth reconstruction from focus
[Herkenhoff et al., 2006].
[79] MI mosaics: A large subset of MI targets were also

mosaicked, most at the request of the MI team. These used
the perspective projection.
[80] Special requests: A large number of ad hoc mosaics

were created by special request from science team members,
long-term planners, Public Outreach, and other sources.
Many of these ended up in press conferences or Web site
releases. These mosaics used a wide variety of projections
and techniques.

Figure 6. Perspective projection mosaic of part of Site 108 Position 139, from Spirit on Sol 424.
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[81] In addition to the traditional mosaics of images,
mosaics were also made from other RDR types. The most
useful of these were mosaics constructed solely from XYZ,
slope or solar energy RDRs. A coregistered image mosaic
could be made using the same geometry, making them
viewable via an overlay mechanism.
[82] The fundamental mosaic methodology and projec-

tions were substantially similar to those used for MPF
[LaVoie et al., 1999], although the software was largely
rewritten and the metadata updated. The ‘‘untilt’’ feature
(described below) of the cylindrical-perspective projection
(called ‘‘McAuley’’ by LaVoie et al.) was new for the
MER application, as were brightness correction and
nonimage mosaics. The pointing correction process had
its roots in the MPF process but has since been signif-
icantly updated.

5.1. Methodology

[83] This section describes the process used by MIPL to
create mosaics. Conceptually, one can think of the process
as adjusting the inputs, projecting them down to a surface,
and looking at the result from a different point of view (the
output projection). In reality, the process was run in reverse
for ease of interpolation, as described below.
[84] The first step was to apply any pointing adjustments

to the input images (see below). This resulted in an adjusted
camera model that described the geometry of each input
image. Note that pointing adjustment was optional; the
telemetered camera models could have been used instead.
This did not work well on Spirit due to some inaccuracies in
the camera models; it worked better on Opportunity. Nev-
ertheless, most mosaics destined for public release were
corrected.

Figure 8. Polar projection mosaic of the same scene. North is up.

E02S02 ALEXANDER ET AL.: PROCESSING OF MER IMAGERY

12 of 21

E02S02



[85] Next, the output projection was determined. The
projections are described in detail in the next section.
The parameters describing the projection were stored in
the image label [see Alexander et al., 2003].
[86] A surface model was critical for mosaics. This was a

mathematical surface which hopefully matched the actual
scene. To the extent that the scene differed from the surface
model, distortion, parallax, and uncorrectable seams could
result. If the surface model matched the scene, there would
be no parallax when changing the point of view (which is
required when making mosaics). However, there were
always variations, which introduced some amount of paral-
lax in every mosaic. This was most evident on the solar
panels where large seams were evident, while the ground
features behind the panels matched perfectly.
[87] The most common surface model, used in all but a

handful of mosaics, was a flat plane. This defaulted to a
horizontal plane (normal pointing vertical) at the level of the
nominal wheels. However, the pointing correction process
usually determined an optimal surface plane, which was
often slightly tilted and moved to compensate for local
topography (it was a compromise over the entire area). The
surface model for MI mosaics was especially problematic;
the plane was highly tilted and proper placement was
critical. Micro-topography often seen in (non-RATed) MI
mosaics created quite severe parallax in some cases, which
was why MI mosaics typically had much more visible seam
mismatches than other kinds of mosaics.
[88] In addition to the plane, a sphere model was

occasionally used for craters. A model projecting to
infinity was also available, but as of this writing has not
yet been used.
[89] After the surface model was constructed, the pro-

jection began. For each pixel in the output mosaic, a
view ray in 3-D space was constructed. How this view

ray was constructed depended on the projection type, and
is detailed in the projection descriptions in the next
section.
[90] The view ray was then projected out until it

intersected with the surface model. The resulting point in
XYZ space was used in the next step. If the ray did not
intersect the surface, the point was assumed to be at
infinity in the direction the view ray was pointing. An
exception to that occurred for the Vertical projection,
described below.
[91] The XYZ location (or direction for the infinity case)

was then back-projected into each input image in turn, using
the corresponding input camera model. The first input for
which the resulting pixel coordinate was inside the image
(excluding border pixels which were thrown away) stopped
the process; that was the image from which the output pixel
value was taken.
[92] Note that this had the effect of stacking the images

such that the first one in the input list of images ‘‘wins’’.
This was no feathering of overlaps; the first image was ‘‘on
top’’ of all the others, and an image completely covered by
preceding images was not used at all.
[93] The absence of feathering (combining or blending

the images in an overlap area) was quite intentional. While
careful blending could make the seam appear to vanish, it
also introduced distortion and artifacts into the mosaic,
which could adversely affect scientific interpretation. As
for strict stacking, an alternative was to split the seam
down the middle of the overlap. This was not done for two
reasons. First, strict stacking led to a more predictable
seam location, which had advantages in the pointing
correction process. Second, stacking allowed the order to
be adjusted. This permitted adjustments to the mosaic such
as hiding bad shadows or data dropouts, or moving the
seam from one edge to the other to avoid a problematic
parallax issue.
[94] Finally, after the back-projection, a bilinear interpo-

lation was performed on the input image, based on the
four pixels surrounding the back-projected location. The
result of this interpolation was the value of the output
pixel. Brightness correction, if used, was applied just
before the interpolation.
[95] Interpolation was optional, and was not normally

done when making mosaics of XYZ or surface normal
(UVW) data.

5.2. Projections

[96] MIPL supported five mosaic projections for MER:
Cylindrical, Perspective, Cylindrical-Perspective, Polar, and
Vertical. They all had different uses and are described
below. In the equations below, which describe how the
view ray was constructed, (i, j) represents the location of the
output pixel in 0-based coordinates, with i corresponding to
sample (x) and j to line (y) (the origin is in the upper-left
corner). CAPITALIZED_VALUES represent projection
parameters, which were stored by the same name in the
PDS image label.
5.2.1. Cylindrical
[97] The cylindrical projection created a linear relation-

ship between azimuth/elevation of the scene and line/sam-
ple in the image. Thus each pixel covered a constant number
of degrees, which was the same in both directions. The

Figure 9. Vertical projection mosaic of the same scene.
North is up, extent is ±15 m from center.

E02S02 ALEXANDER ET AL.: PROCESSING OF MER IMAGERY

13 of 21

E02S02



azimuth and elevation were measured from a single point,
called the projection origin.
[98] Cylindrical projections were the primary panoramic

mosaic. See Figure 7a for an example. They were unsuitable
for stereo mosaics, however.
[99] Most cylindrical mosaics were produced using the

Site frame, which removed the effect of rover tilt, resulting
in a flat horizon.
[100] The view ray emanated from PROJECTION_

ORIGIN_VECTOR at an azimuth and elevation defined
as

azimuth ¼ i

MAP RESOLUTION
þ START AZIMUTH

ð8Þ

elevation ¼ ZERO ELEVATION LINE� j

MAP RESOLUTION

5.2.2. Perspective
[101] This mosaic was constructed by creating a synthetic

output camera model, which was similar to the input camera
models (except it was always linear, or CAHV). Thus the
output looked very similar to the inputs. A perspective
mosaic was only good for small areas however; as the field
of view approached 180� the size of the mosaic approached
infinity. 120� was about the maximum practical size for a
perspective mosaic.
[102] Perspective mosaics were good for small-scale ste-

reo mosaics (see Figure 6 for an example). MI mosaics
exclusively used the perspective projection (see Figure 10
for an example).
[103] The view ray was constructed simply by projecting

through the output camera model, which was stored in the
label. The projection math is defined in equation (1).
5.2.3. Cylindrical-Perspective
[104] This mosaic, known as the ‘‘McAuley’’ [LaVoie et

al., 1999] during MPF, was a hybrid of cylindrical and
perspective. It was linear in azimuth as with the cylindrical
projection, but each column was assigned its own output
camera model, which resulted in a perspective projection in
the vertical direction. This resulted in a mosaic that was
particularly well suited to stereo panoramic mosaics. See
Figure 7b for an example.
[105] There were four steps to derive the output models:
[106] 1. The initial camera model was computed. This

was a CAHV linearized model derived from the first input
to the mosaic, and is described in the label.
[107] 2. The instantaneous field of view (ifov) of the

‘‘central’’ pixels (the point where the camera model A
vector intersected the image plane) was computed:

ifov ¼ tan�1 1:0

H� A H � Að Þj j

� �
ð9Þ

Alternatively, this could be derived from the image size and
azimuthal extent (where the azimuths were adjusted by 360�
such that the result was minimally positive):

ifov ¼ STOP AZIMUTH� START AZIMUTH

LINE SAMPLES
ð10Þ

[108] 3. The azimuth of each column was computed:

azimuth ¼ START AZIMUTHþ i� ifov ð11Þ

[109] 4. The initial camera model was repointed using
the camera kinematics routines (described below in the
pointing correction section), using the computed azimuth
and PROJECTION_ELEVATION. This resulted in the
final camera model for the column.
[110] Finally, the view ray for each pixel was constructed

as follows (C, A, H, V are the column’s camera model
parameters):

samp ¼ A �H
ð12Þ

line ¼ A � Vþ j� PROJECTION ELEVATION LINE

[111] This (samp,line) coordinate was then projected into
space using the column’s camera model, becoming the view
ray.
[112] Note that the C points of the output cameras

described a ring in space, whose diameter was approxi-
mately the baseline between the cameras, and whose plane
was approximately horizontal in the rover frame. This ring
maintained the baseline separation between the left and right
eyes, and was what made this projection good for stereo
panoramas.
[113] To achieve true, epipolar-aligned stereo, the mosaic

had to be created using the Rover frame. This meant that the
mosaic was aligned with the rover axes, but had the
unfortunate effect of creating a sinusoidal horizon if
the rover was tilted when the mosaic was acquired. If the
tilt was small, the mosaic could be generated in Site frame,
which resulted in a flat horizon but introduced some vertical
disparity that made it hard to view in stereo. A recently
developed technique mitigated this in some circumstances,
resulting in a flat horizon with reduced (or ideally no)
vertical disparity. This technique, called ‘‘untilting’’, point-
ed the individual cameras using a ‘‘flat’’ coordinate system
for the kinematics computations rather than using rover
frame. Thus the ring of C points was aligned with the
horizon rather than the rover. In the absence of parallax, this
worked well. However, the technique was rather sensitive to
parallax effects caused by the scene not matching the
surface model, so it was not always effective.
5.2.4. Polar
[114] The polar projection provided a panoramic view

without the severe distortion near the nadir that cylindrical
produces. This provided a better view close up but
suffered somewhat at distance. See Figure 8 for an
example. Radial distance from the center was linearly
proportional to elevation, while azimuth described a circle
at that distance.
[115] The view ray was computed by

x ¼ i� SAMPLE PROJECTION OFFSET

y ¼ LINE PROJECTION OFFSET� j

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð13Þ

elevation ¼ r

MAP RESOLUTION
� 90


azimuth ¼ REFERENCE AZIMUTHþ 90
� tan�1 y=xð Þ
MAP RESOLUTION

where the inverse tangent works for all four quadrants.
The view ray emanates from PROJECTION_ORIGIN_
VECTOR at the computed azimuth and elevation.

E02S02 ALEXANDER ET AL.: PROCESSING OF MER IMAGERY

14 of 21

E02S02



5.2.5. Vertical
[116] The vertical projection provided a view where the

location of a pixel in the image was directly proportional to
the (x, y) coordinates of the projection surface. However, it
is important to realize that this was not an orthorectified
rendering. Nor was the (x, y) coordinate derived from actual
stereo correlation. Instead, it assumed an ideal surface
described by the surface model and simply projected to
that. This caused severe layover of rocks and distortion of
terrain that did not match the surface model. Nevertheless, it
did provide a useful overhead view for many purposes. See
Figure 9 for an example.
[117] The view ray was calculated as follows. Note that

nl is the number of lines in the mosaic and ns is the number
of samples.

x ¼ nl

2
� j

� �
�MAP SCALE

ð14Þ

y ¼ i� ns

2

� �
�MAP SCALE

[118] The view ray emanates from (x, y, 0) and points
straight down (0, 0, 1). If the ray did not intersect with the
surface, it was changed to point straight up (0, 0, �1)
instead.

5.3. Pointing Correction

[119] The pointing of the cameras as provided in the
rover data telemetry was determined to be sufficient for
quick-look mosaics. However, there were errors in this
pointing, both systematic and random. To achieve a high-
quality mosaic, the pointing had to be corrected to reduce
or eliminate visible seams. It is interesting to note that
Opportunity did much better than Spirit in this regard;
there was a �0.2� twist in both the pancam and navcam of
Spirit that was not accounted for in the telemetered camera
models.
[120] There were two methods to adjust the pointing:

manual and tiepoint. Both are described below.
[121] Regardless of the method, the result of the pointing

correction was a product called a ‘‘nav file’’. This file
contained, for each image, the original pointing parameters

Figure 10. Perspective projection stereo mosaic of RAT hole ‘‘Diamond Jenness’’ taken by Opportunity
on Sol 178. Stereo derived from focus by MI team.
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of the image, and the corrected parameters. It also contained
additional identifying information.
[122] Pointing parameters were simply those numbers

which represented how a camera was pointing in the rover
coordinate frame, reduced to the available degrees of
freedom. They modeled the physical actuators on the rover.
Thus for the pancam and navcam, there were two pointing
parameters: azimuth and elevation angles. The MI had four,
one angle for each arm joint. The hazcams had none, since
they were not articulated.
[123] The pointing parameters were used as inputs to

kinematics procedures, which computed the camera model.
These procedures modeled the physical motions of the
cameras and transformed a calibration camera model to
reflect the actual pointing and location of the camera. These
kinematics procedures were used onboard to compute the
camera models that were telemetered with the image. MIPL
used the same procedures (even using some of the flight
software) to recompute the camera models on the ground,
using the corrected pointing parameters from the nav file.
[124] For the pancam and navcam, the MIPL code added

one additional pointing parameter: twist. This was to
compensate for the unmodeled twist described above for
Spirit (although it was useful for Opportunity as well). This
twist was implemented by rotating the final camera model
by the specified amount around its A axis (i.e., the general
direction in which the camera was pointing).
[125] Pointing correction therefore consisted of finding a

set of pointing parameters for each image that minimized
the seams. It is important to note that rubber-sheeting
methods were not used. While these techniques could have
completely eliminated seams, they compromised any scien-
tific or operational use of the images. By maintaining each
image as a fixed projection through its camera model,
quantitative measurements could be obtained.
5.3.1. Manual Correction
[126] Manual correction was accomplished using a tool

called MICA (Mosaic Interactive Correction Assistant).
This was a Java-based tool that displayed the mosaic and
allowed individual inputs to be selected and their pointing
parameters interactively adjusted. The display repainted
dynamically to show the result of the correction.
[127] This tool was used extensively early on in the

mission. However, experience showed that the semi-auto-
mated tiepoint method was more efficient, and most
mosaics were eventually created that way. The manual
method was still used occasionally for adjusting the tie-
pointed results, however.
5.3.2. Tiepoint Correction
[128] The tiepoint method consisted of two phases: (1)

gathering tiepoints and (2) generating a solution.
[129] Tiepointing was defined as finding coordinate pairs

that identified the same feature from the scene in each of
two different images. This resulted in pixels that matched,
or tied, between the two images. Collecting a large number
of these points across the mosaic helped to define how it
was to be stitched together.
[130] An automated tiepointing procedure existed but did

not perform well and was not used. Instead, tiepoints were
gathered interactively by an analyst using a program called
marstie to analyze the image geometry and display over-
lapping pairs one at a time on a monitor screen. For each

overlapping pair, the user manually picked matching fea-
tures on the two images. The program’s correlator gathered
the resulting tiepoints and processed them to subpixel
accuracy. Most commonly, three tiepoints were gathered
along a long seam (adjacent images horizontally or verti-
cally), with one tiepoint in a corner overlap. But that was
just a guideline; actual numbers varied.
[131] Because the images were adjusted on the basis of

the tiepoints, they tended to be most accurate around the
tiepoints. For this reason, tiepoints were gathered close to
the edge of the image that was on top in the final mosaic.
This put the tiepoints right next to the seam, which tended
to minimize the seams. Tiepoints were also generally placed
as close as practical to the nominal surface (so that they
matched the surface model).
[132] It typically took an hour or less to tiepoint a navcam

or MI mosaic. However, large pancam panoramas could
take several days or longer to do.
[133] After the tiepoints were gathered, a program called

marsnav analyzed them to come up with a solution. This
was done using a function minimization process, where the
pointing parameters for each image were the free parame-
ters. The minimization algorithm was called ‘‘amoeba’’ and
is defined by Press et al. [1988, p. 305ff]. It was a downhill
simplex method that did not require partial derivatives to
operate.
[134] The function being minimized was the residual

tiepoint error. For each tiepoint, the coordinate from one
image was projected from that image to the surface model
and back into the other image, just as for a mosaic. The
projected location was then compared with the second
coordinate from the tiepoint. The difference in each direc-
tion (x and y) was squared, and the sum across all tiepoints
was accumulated. This residual error was the cost function
that was minimized. As the pointing parameters were
adjusted, the residual error became smaller when the tie-
points matched better. Once the minimum was obtained, the
pointing parameters were saved in the nav file.
[135] In addition to adjusting pointing parameters, the

same function minimization procedure could also adjust
the surface model, and even perform rover localization. It
became a standard practice to let marsnav determine the
appropriate surface model for the mosaic. Rover localiza-
tion (changing the rover’s position and/or orientation) was
used on occasion, when images from multiple locations
were combined, but this was rare. Both worked by simply
adding more free parameters to the minimization process in
addition to the pointing parameters; they affected the
projection, which changed the cost metric without changing
the cost function itself.
[136] A recent addition to this process was the concept of

‘‘inertia’’. As originally designed, the solution was insensi-
tive to a global change to all images, say adding the same
amount to all azimuths. This could cause the result to
‘‘walk’’, giving inaccurate azimuth results. In practice, this
did not occur with full 360� mosaics, but occasionally was
an issue for small ones. Another issue was the occasional
misalignment of the horizon for small mosaics with frame
twist (a la Spirit). Inertia added an additional factor to the
cost function, which made the images tend to stay in place
(hence the name). This factor was the sum across all
pointing parameters of the difference between the original
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and current pointing parameters, times a weight, squared.
The weight determined how strong the inertia effect was.
This proved to be a very valuable addition and was
especially useful when making stereo mosaics (to preserve
the original baseline as much as possible).

5.4. Brightness Correction

[137] Almost all MIPL mosaics used radiometrically
corrected inputs: either MIPLRAD for navcam and MI
mosaics, or data provided by the pancam team for pancam
mosaics. However, these methods were not always perfect.
In roughly 25% of the mosaics, differences in lighting
created radiometric discontinuities at the seams.
[138] In order to reduce these discontinuities, a multipli-

cative factor was applied to each image. A pair of programs
(marsint/marsbias) analyzed the overlaps and determined
the optimum factors via another function minimization
process. This eliminated most of the brightness seams, but
not all of them. A process that varies the correction factor
within each image, leaving only discontinuities caused by
differences in illumination angle, is being considered for
future work.

6. Rover Localization

[139] Each time the rover moved, camera image data were
acquired from a different point of view. Often it was
desirable to combine data taken from two different locations
and combine them in some manner. This was especially
useful for mosaics and terrain meshes. In order to do that,
knowledge of the relative position and orientation of the
rover at each location was required.
[140] Determining the position (XYZ location) and orien-

tation (roll/pitch/yaw) of the rover (collectively called
‘‘location’’ here) was a process called localization. The
baseline localization was provided by the rover itself in
telemetry: it maintained a knowledge of where it was based
on counting wheel rotations or performing visual odometry
[Olson et al., 2001], and of how it was oriented via tilt
sensors and finding the sun with the cameras. Unfortunately,
the rover’s position knowledge was not very precise; it
could be 10% or more off in some cases. Orientation
knowledge was better but errors still occurred.
[141] Therefore it was often advantageous to refine the

rover’s location (or more commonly, just its position) on the
ground via various techniques. Several teams generated
localization updates throughout the mission, most notably
the global position refinements from R. Li (see method-
ology of Li et al. [2004]). The Mobility operations team
also generated refinements from time to time.
[142] MIPL used several methods for localization, which

are described below.

6.1. Site and Rover Vector Files

[143] The rover used a Rover Motion Counter (RMC)
to keep track of its location. This counter incremented
every time the rover or any significant part of the rover
(arm, mast, HGA) moved [Maki et al., 2003]. Of interest
here are the first two components of the RMC: Site and
Position.
[144] Each new Site identified by the operations team

defined a new coordinate system with the rover at (0, 0, 0),

and zeroed out all the counters. Then the Position within
that Site incremented each time the rover moved. All
rover positions were relative to the Site coordinate frame.
Incrementing the Site allowed for accumulated errors in
rover position to be zeroed out, and made it easier to
work in the local area.
[145] Each image acquired by the rover had associated

with it the RMC counter value, and the rover’s idea of
where it was relative to the Site and its orientation (ori-
entations were always defined with respect to north and the
gravity vector). This information was stored in the image
header (labels). It was also stored in a file called the Rover
Vector File (RVF). These files (one per Site) existed in the
OSS and were a convenient way to look at the rover
motion history.
[146] Unfortunately, things were not so easy when it

came to Site offsets. A Site cleared the coordinate system
for local work, but the location of that Site origin relative
to the previous Site was necessary to keep track of global
position. This offset between Sites was not available in the
image header. It came down in telemetry only in a product
called the SAPP Knowledge Report. The information was
captured by MIPL and stored in a file called the Site
Vector File (SVF). There was only one of these per
mission, and was the most convenient place to find all
inter-Site vectors.
[147] The original design called for updates to the SVF

and RVFs to be made on the basis of new localizations.
However, operational procedures were not developed to
handle these updates. The result was that the SVF and
RVF files in the OSS contained only the telemetered rover
locations. Localization updates were therefore maintained
on an ad hoc basis via special SVF/RVF files by MIPL, or
via other (often incompatible) means by other teams.

6.2. MIPL Localization Techniques

[148] The first method for rover localization attempted to
coregister several pancam mosaics of Opportunity’s Eagle
Crater outcrop. First, a low-resolution navcam mosaic was
created. The pancams were then mosaicked into the same
projection on the basis of telemetered positions. The
mosaics were compared to the low-res version and each
other, and offsets were estimated by hand. The process then
repeated using the new estimates. This required a massive
amount of human effort, with results that were less than
satisfying.
[149] The second method consisted of analyzing XYZ

locations. The coordinates of matching features were
extracted from images taken from different locations. The
offset between the two was applied to the rover position to
get an updated position, the XYZs were rerun, and the
process was repeated until it converged adequately. This
provided a much better alignment of features in the final
mosaic.
[150] The difficulties of these methods motivated the

development of a third technique after a couple months of
operation. This technique included localization parameters
(position and/or orientation for selected values of the RMC)
in the function minimization of the marsnav program, and
was described in more detail in the Pointing Correction
section above. The optimal localization was thus computed
at the same time as the mosaic pointing correction and
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surface model determination. This technique was used a few
times, most notably for the Spirit ‘‘Legacy’’ 360� color
panorama, which was acquired from two slightly different
locations.
[151] While this later technique worked reasonably well,

it was still a highly labor-intensive process, and was not
used very often. Combining data taken from different
locations was inherently problematic; besides the localiza-
tion issue, parallax was a huge issue for most geometries.
[152] MIPL also made use of localizations provided by

other teams, most notably for several terrain meshes made
using data from different locations with localizations pro-
vided by the Mobility team. This was most useful when the
rover needed to backtrack into previously traversed terrain.

7. MIPL Operations

[153] The MIPL team was busiest during and immediately
following the telemetered downlink of MER instrument
data. Through these time periods, MIPL analysts had to
keep close tabs on the pipeline processing of input data and
the production of a wide variety of output products. Special
requests varying in complexity and purpose were often
submitted to the MIPL team by any number of product
customers, including rover engineers, science team mem-
bers and JPL Public Information Office (PIO) personnel.
As a result, MIPL was involved in passing a large number
of standard and special products to PIO for release to the
public.

7.1. Product Tracking

[154] To address product accountability issues, MIPL
analysts developed data tracking tools to monitor the data
flow through the pipeline. The Unix environment available
on the GDS enticed most tool development to be at the shell
script level, though the need for low-level coding was not
eliminated. This section discusses a few of MIPL’s more
noteworthy data product tracking capabilities.
7.1.1. Script-Based
[155] The MIPL pipeline’s reliance upon directory queues

in the OSS allowed a simple Perl script to be written that
provided insight into the systematic processing. It was not a
GUI representation, but numerical, counting file totals in

each queue. This capability served as a primary view into
the status of the pipeline’s processing.
[156] Other script tools were written to determine which

data products were completely processed and which ones
were partial products. These tools were easy to develop due
to the pipeline’s flexible design, and were very useful for
data accountability.
7.1.2. GUI-Based
[157] A GUI system called the ‘‘Process Update Tracking

Tool’’ (PUTT) was created that presented the MIPL system
operator with a Web page which visually indicated (via
color) the completion status of each application program
executed within the MIPL pipeline. An application program
that completed successfully was marked in green, while a
program that completed unsuccessfully was marked in red.
From this information, the operator could (1) quickly
determine if the pipeline was processing the data nominally,
(2) isolate processing errors, and (3) interactively link to the
appropriate section of the processing log files that included
the processing error. See Figure 11 for a captured snapshot
of the PUTT tool’s GUI.
[158] The PUTT system was implemented using a system

of token files. As the pipeline started processing each EDR,
it wrote a small XML token file. This file was updated each
time an application program was run with the program
name, return status, time, and a pointer to the log file. To
protect against simultaneous overwriting of token files by
multiple processes, the PUTT system invoked a special
program that write-locked the current file, so that it was
updated by only one process at a time.
[159] These token files were collected every few minutes

by a Perl script, which concatenated them together and
transformed the result into an HTML file. If errors were
present, a second page containing the log file extract was
created as well. These files were then pushed to a Web
server for viewing (which had to be outside the flight LAN,
due to project constraints).

7.2. Product Quality Control

[160] In order to assure that the data products produced by
the MIPL team were properly created, a number of quality
control (QC) procedures were incorporated into the pipeline
process. Quality control consisted of visually inspecting
image data products and visually inspecting the label
associated with the data products.
[161] The earliest possible QC step consisted of examin-

ing the input products to the MIPL Pipeline process. As
described previously, data products came to MIPL as
separate instrument data and metadata files. Team members
used special GDS tools (mer_dp_view, showmerdpimg) to
view these input products in order to verify whether visible
data corruption was present prior to MIPL processing.
[162] For visual inspection of nearly all products created

by the pipeline, (EDRs and RDRs), a Java program was
written to aid in viewing of all products related to a
particular EDR. This tool, marsviewer, allowed the analyst
to overlay the various RDR products graphically on top of
the original or linearized image to verify their correctness.
This RDR overlay capability was used to create the various
RDR images in Figure 4. Moving the cursor over the image
showed pixel values of any or all of the related products,
from intensity values to range, slope, XYZ coordinates, or

Figure 11. Screen shot of Process Update Tracking Tool
(PUTT) display.
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even IDD reachability values. In addition to its extensive
use as a QC visual inspection tool, marsviewer quickly
became a favorite application for data interpretation
amongst members of the science and engineering teams.
[163] While marsviewer was used for visual QC of most

products, the wedges, meshes and mosaics were inspected
using other software. In the case of the wedges and the
meshes, the products were inspected with the target selec-
tion programs SAP and RSVP. The mosaics were viewed
with a more generic image display program.
[164] Because of the high volume of the data flowing

through the pipeline and the timing requirements placed on
the MIPL team, visual QC was performed daily on a spot-
check basis for each downlink, and in response to reported
problems. The MIPL analyst would browse the newly
arrived products and verify that they looked ‘‘normal’’,
but they would not necessarily view every product created
by the pipeline.

7.3. External Delivery and Access

[165] There were a significant number of users external to
the flight LAN, or even external to JPL, which required
access to the data products generated by the pipeline. This
access was provided via two primary mechanisms: FEI and
the Image Atlas.
7.3.1. External Product Delivery
[166] Products generated by the MIPL pipeline were

delivered from the OSS to remote sites external to the flight
LAN using a client-server data distribution system devel-
oped at JPL called FEI [Huang, 2003]. MIPL administers
FEI servers at JPL to manage mission data for a variety of
flight projects.
[167] For MER, FEI client software installed on machines

at sites located outside the flight LAN, such as the home
institutions of science teams and other JPL local sites,
transferred data to and from the FEI servers. FEI works
with Kerberos, a security package developed through Proj-
ect Athena at MIT to provide a means of authenticating
users to ensure security over a network using encrypted
passwords. By using Kerberos [Neuman and Ts’o, 1994],
FEI maintains its own individualized user access control, so
FEI users are not required to establish accounts on any data
center machines to access data, which is the case with FTP.
The strength of FEI is in its subscription capabilities. A
subscription allows files that are added to an FEI server to
be pushed automatically to subscribed sites. For MER, FEI
subscriptions were used to parse EDR and RDR labels and
add the meta-data to MIPL’s internal database for the Image
Atlas (see next section).
[168] FEI subscriptions were also used to support remote

operations, beginning with the first MER Extended Mission.
As science teams returned to their home institutions, remote
copies of the OSS replicated at those institutions were
populated by MIPL data products via FEI. This allowed
remote use of SAP, greatly reducing Extended Mission
travel costs.
7.3.2. PDS Access to Products
[169] The MIPL pipeline produced a huge quantity of

products. In order to facilitate access to these, a Web-based
PDS tool called the Image Atlas had the capability of
querying a MIPL-resident database for quick retrieval and
display of products. While not used for tactical operations, it

was very valuable for finding and retrieving data for
analysis.
[170] MIPL’s database, located external to the flight LAN,

was populated with the metadata information carried in each
product’s PDS label. The queries available via the Image
Atlas were based on the designs implemented for MPF and
other flight projects, providing the user with quick visibility
to the data as well as a means to download it to local
resources.
[171] The Image Atlas can be accessed at http://

pdsimg.jpl.nasa.gov/Atlas.
[172] External to JPL at Washington University in St.

Louis, the PDS Geosciences Node maintained a similar
Web-based capability called the Analyst’s Notebook for the
science community to fetch MER science and engineering
data and documentation.
[173] The Analyst Notebook can be accessed at http://

anserver1.eprsl.wustl.edu.

7.4. Public Release of MIPL Products

[174] Camera image products generated by MIPL as part
of OPGS were publicly released along three different time-
lines throughout the mission via a variety of outlets: (1) press
conferences convened intermittently to release selected sub-
sets of OPGS and science team products, (2) a Web-based
browser to view JPEG compressed versions of image EDRs
released daily to a nationwide alliance of museums, and
(3) PDS Archive Volumes released every two or three
months that contained OPGS and science products and
ancillary documents produced to PDS standards.
[175] Regarding the press conferences, members of the

MER flight team were encouraged to submit candidate
images for press release. A process was defined that allowed
MIPL analysts to designate products for consideration as
press release images. Press briefing candidate images were
provided in both TIF and JPEG format and supplemented
with a text file containing a brief caption. Candidate images
and their captions were placed in a designated directory
location for consideration by a team of reviewers. Special
video products created by the Solar System Visualization
(SSV) team were also produced for press conferences,
allowing the presenting scientist or engineer to walk the
public and the press through the remote scene on Mars as it
panned across the video screen.
[176] The second process for public release of MIPL

products required MIPL to electronically deliver contrast
enhanced JPEG versions of the most recent image EDRs to
PIO each day. This allowed interested members of the
public to browse the latest images from the surface of Mars
soon after they were processed. These products were created
and transferred to a server outside the mission firewall via
FEI as part of the pipeline process.
[177] As the third outlet for public consumption of MIPL

products, at scheduled intervals every two or three months
subsequent to the MER prime mission, various nodes of the
PDS assembled inventories of OPGS and science team
products in 90-Sol increments into archive volumes built
according to specific PDS standards. The primary means to
access the released PDS data sets were the Image Atlas and
Analyst’s Notebook mentioned in section 7.3.2. References
to the Spirit rover camera data sets that were produced by
OPGS and archived into PDS volumes are too many in
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number to list in this paper. They are available at http://
starbrite.jpl.nasa.gov.

8. Conclusion

[178] The system developed by MIPL borrowed from the
old and the new to forge itself into a highly successful asset
for MER mission operations. It incorporated legacy capa-
bilities from previous Mars lander missions in a successful
bid to reduce development costs. In addition, it yielded new
innovations evoked by the demands and time constraints of
the in situ operations scenario. These new capabilities
included a robust pipeline, many new types of RDR derived
products, terrain meshes, nearly seamless mosaics and new
rover localization techniques, all managed using a number
of QC, tracking and data distribution tools. Capabilities
demonstrated for the first time in support of MER were
designed to be reusable, and will become the baseline for
future planetary exploration missions, including the upcom-
ing Phoenix and Mars Science Laboratory missions and the
Lunar Exploration Program.

Notation

ASCII American Standard Code for Information
Interchange.

APXS Alpha Proton X-ray Spectrometer.
CAHV Linear camera model described by vectors C

(Center of focus), A (Axis normal to the
sensor plane, which is not the optical axis), H
(Horizontal information) and V (Vertical
information).

CAHVOR Camera model CAHV accounting for CCD
and nonlinear distortions with vector O
(Optical axis) and coefficients R (Radial
distortion).

CAHVORE Camera model CAHVOR accounting for E
(moving Entrance pupil).

CCD Charge Coupled Device.
EDR Experiment Data Record, a NASA Level 0

product.
FEI File Exchange Interface, a server/client based

file delivery system.
FIDO Field Integrated Design & Operations, a JPL

rover testbed.
FTP File Transfer Protocol, a protocol for ex-

changing files over the Internet.
GDS Ground Data System.
GIF Graphics Interchange Format, an image file

format.
GUI Graphical User Interface.

Hazcam Hazard and Avoidance Camera, an engineer-
ing stereo camera.

HGA High Gain Antenna.
HTML Hypertext Markup Language.

IDD Instrument Deployment Device.
JPEG Joint Photographic Experts Group, a lossy

image compression technique.
JPL Jet Propulsion Laboratory.

LAN Local Area Network, a firewall secured
network.

M01 Mars 2001 lander testbed.

MB Mössbauer, a spectrometer instrument.
MER Mars Exploration Rover.
MI Microscopic Imager.

MiniTES MiniatureThermal Emission Spectrometer.
MIPL Multimission Image Processing Laboratory,

at JPL.
MIPLRAD MIPL’s radiometric correction process.

MPF Mars Pathfinder.
MPL Mars Polar Lander.
MSL Mars Science Laboratory.

Navcam Navigational Camera, engineering stereo
camera with wide field of view.

NFS Network File System.
OPGS Operations Product Generation Subsystem.
OSS Operations Storage Server.

Pancam Panoramic Camera, science stereo camera
with narrow field of view.

PDS Planetary Data System.
PIG Planetary Image Geometry, a software library

of core subroutines.
PIO Public Information Office, at JPL.

PUTT Process Update Tracking Tool, a GUI-based
quality assessment tool.

QC Quality Control.
RAT Rock Abrasion Tool.
RDR Reduced Data Record, a NASA Level 1+

product.
RMC Rover Motion Counter.
RSVP Rover Science Visualization Planner, the

primary navigation tool used by the Rover
Planner team.

RVF Rover Vector File.
SAP Science Activity Planner, the primary target

selection tool used by science teams.
Sol Mars solar day.

SSV Solar System Visualization, a team of
visualization experts at JPL.

SVF Site Vector File.
TIF Tagged Image File, a grey-scale and color

image file format.
VICAR Video Information Communication And

Retrieval, MIPL’s image processing software.
XML Extensible Markup Language.
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